

Ge appointation
$$\rightarrow$$
 such if we add kinaids: $R_n(x)$, which can
be expressed in many fores, e.g. legrange's form:
 $R_n(x) = (x-a)^{n+1} f^{(n+1)}(x+0h)$ where $h = x-a$
 $(n+1)$?
If we replace x in expansion with $x \neq a$, is. $f(x+a)$:
 $f(x+a) = f(a) + \frac{x^2}{n!} f'(a) + \frac{x^2}{a!} f''(a) + \dots \frac{x^n}{n!} f^{(n)}(a) + f_n(x)$
Tabler (Agranial expansion of $f(x)$ about $x = a$
 $f(x+a) = \int_{n=0}^{\infty} \frac{x^n}{n!} f^{(n)}(a)$
solving and leads to special coze:
 $f(x) = f(b) + \frac{x}{n!} f'(b) + \frac{x^2}{a!} f''(b) + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!} f^{(n)}(b)$
Nadamic serve activity
Nadamic serve activity